d06 — Mesh Generation d06cac

NAG C Library Function Document

nag _mesh2d_smooth (d06cac)

1 Purpose

nag_mesh2d smooth (d06cac) uses a barycentering technique to smooth a given mesh.

2 Specification

#include <nag.h>
#include <nagdO06.h>

void nag_mesh2d_smooth (Integer nv, Integer nelt, Integer nedge, double coor[],
const Integer edge[], const Integer conn[], Integer nvfix,
const Integer numfix[], Integer itrace, const char *outfile, Integer nqint,
NagError *fail)

3 Description

nag mesh2d _smooth (d06cac) uses a barycentering approach to improve the smoothness of a given mesh.
The measure of quality used for a triangle K is

hx
Ok = a—;
K Pk

where A is the diameter (length of the longest edge) of K, py is the radius of its inscribed circle and

3. o . . .
a=-~isa normalization factor chosen to give O = 1 for an equilateral triangle. Oy ranges from 1, for

an equilateral triangle, to co, for a totally flat triangle.

nag_mesh2d smooth (d06cac) makes small perturbation to vertices (using a barycenter formula) in order to
give a reasonably good value of Qy for all neighbouring triangles. Some vertices may optionally be
excluded from this process.

For more details about the smoothing method, especially with regard to differing quality, consult the d06
Chapter Introduction as well as George and Borouchaki (1998).

This function is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

5 Arguments
1: nv — Integer Input
On entry: the total number of vertices in the input mesh.

Constraint: nv > 3.

2: nelt — Integer Input
On entry: the number of triangles in the input mesh.

Constraint: nelt <2 x nv — 1.

[NP3660/8] d06cac.1

d06cac NAG C Library Manual

3:

nedge — Integer Input
On entry: the number of the boundary and interface edges in the input mesh.

Constraint: nedge > 1.

coor[2 x nv| — double Input/Output

On entry: coor[2 x (i —1)] contains the x co-ordinate of the ith input mesh vertex, for
i=1,...,nv; while coor[2 x (i — 1) 4+ 1] contains the corresponding y co-ordinate.

On exit: coor[2 x (i — 1)] will contain the x co-ordinate of the ith smoothed mesh vertex, for
i=1,...,nv; while coor[2 x (i — 1) + 1] will contain the corresponding y co-ordinate. Note that
the co-ordinates of boundary and interface edge vertices, as well as those specified by you (see the
description of numfix), are unchanged by the process.

edge[3 x nedge] — const Integer Input

On entry: the specification of the boundary or interface edges. edge[3 x (j—1)] and
edge[3 x (j — 1) + 1] contain the vertex numbers of the two end points of the jth boundary edge.
edge[3 x (j—1)+2] is a user-supplied tag for the jth boundary or interface edge:
edge3 x (j — 1) + 2] =0 for an interior edge and has a non-zero tag otherwise. Note that the
edge vertices are numbered from 1 to nv.

Constraint: 1 < edge[3 x (j—1)+i— 1] < nv and edge[3 x (7 — 1)] # edge[3 x (j — 1) + 1], for
1=1,2and j=1,2,...,nedge.
conn[3 X nelt] — const Integer Input

On entry: the connectivity of the mesh between triangles and vertices. For each triangle j,
conn[3 x (j— 1) +i— 1] gives the indices of its three vertices (in anticlockwise order), for
i=1,2,3and j=1,...,nelt. Note that the mesh vertices are numbered from 1 to nv.

Constraint: 1 <conn[3 X (j—1)+4i—1]<nv and conn[3 x (j—1)] #conn[3 x (j— 1)+ 1]
and conn[3 x (j — 1)] # conn[3 x (j — 1) + 2] and

conn[3x (j— 1)+ 1] #conn[3 x (j—1)+2], for i =1,2,3 and j = 1,2,..., nelt.

nvfix — Integer Input

On entry: the number of fixed vertices in the input mesh.

Constraint: 0 < nvfix < nv.

numfix|[dim] — const Integer Input
Note: the dimension, dim, of the array numfix must be at least max(1, nvfix).
On entry: the indices in coor of fixed interior vertices of the input mesh.

Constraint. if nvfix > 0, 1 < numfixi — 1] < nv, for i = 1,2,..., nvfix.

itrace — Integer Input
On entry: the level of trace information required from nag_mesh2d_smooth (dO6cac).
itrace <0
No output is generated.
itrace = 1

A histogram of the triangular element qualities is printed before and after smoothing. This
histogram gives the lowest and the highest triangle quality as well as the number of elements
lying in each of the nqint equal intervals between the extremes.

itrace > 1

The output is similar to that produced when itrace = 1 but the connectivity between vertices
and triangles (for each vertex, the list of triangles in which it appears) is given.

d06cac.2 [NP3660/8]

d06 — Mesh Generation d06cac

10:

12:

6

You are advised to set itrace = 0, unless you are experienced with Finite Element meshes.

outfile — const char * Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

nqint — Integer Input
On entry: the number of intervals between the extreme quality values for the input and the smoothed
mesh. If itrace = 0, then nqint is not referenced.

fail — NagError * Input/Output
The NAG error argument (see Section 2.6 of the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, nedge = (value).
Constraint: nedge > 1.

On entry, nv = (value).
Constraint: nv > 3.

NE_INT 2

On entry, nelt = (value), nv = (value).
Constraint: nelt <2 x nv — 1.

On entry, nv = (value), nvfix = (value).
Constraint: 0 < nvfix < nv.

On entry, the endpoints of the edge j have the same index i: j = (value), i = (value).

On entry, vertices 1 and 2 of the triangle & have the same index i: k = (value), i = (value).

On entry, vertices 1 and 3 of the triangle k& have the same index i: k = {value), i = (value).
)

On entry, vertices 2 and 3 of the triangle k& have the same index i: k = (value), i = (value).

NE_INT 3

On entry, numfix[i — 1] <1 or numfixi — 1] > nv: numfix[i — 1] = (value), i= (value),
nv = (value).

NE_INT 4

On entry, conn(i,j) <1 or conn(i,j) > nv, where conn(i,j) denotes conn3 x (j —1)+i—1]:
conn(i,j) = (value), i = (value), j = (value), nv = (value).
On entry, edge(i,j) <1 or edge(i,j) > nv, where edge(i,j) denotes edge[3 x (j—1)+i— 1]
edge(i,j) = (value), i = (value), j = (value), nv = (value).

[NP3660/8] d06cac.3

d06cac NAG C Library Manual

NE_INTERNAL_ERROR

A serious error has occurred in an internal call to an auxiliary function. Check the input mesh
especially the connectivity. Seek expert help.

NE_NOT_CLOSE_FILE

Cannot close file (value).

NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

7 Accuracy

Not applicable.

8 Further Comments

Not applicable.

9 Example

In this example, a uniform mesh on the unit square is randomly distorted using functions from Chapter g05
(see Figure 1). nag mesh2d smooth (dO6cac) is then used to smooth the distorted mesh and recover a
uniform mesh (see Figure 2).

9.1 Program Text

/* nag_mesh2d_smooth (dO6cac) Example Program.

*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*

* Mark 8 revised, 2004

*

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd06.h>
#include <nagg05.h>

#define EDGE (I, J) edge[3*((J)-1)+(I)-1]
#define CONN(I,J) conn[3*((J)-1)+(I)-1]
#define COOR(I,J) coor[2*((J)-1)+(I)-1]
int main(void)
{
const Integer nvfix=0;
const double zero=0.0;
double delta, hx, hy, pi, dpi, r, rad, sk, theta, x1, x2, x3, yl, v2, v3;
Integer exit_status, i, imax, imaxml, ind, itrace, j, jmax, jmaxml, k,
mel, me2, me3, nedge, nelt, ngint, nv, reftk;
char pmesh[2];
double *coor=0;
Integer *conn=0, *edge=0, #*numfix=0;
/* nag_rngs_init_repeatable (g05kbc) requires iseed[0]= and igen=0 for
* it to mimic nag_random_init_repeatable().
*
/
Integer igen = 0, iseed[] = {0, 0, 0, 0};
double one_drawl[1l];
NagError fail;

d06cac.4 [NP3660/8]

d06 — Mesh Generation d06cac

INIT FAIL(fail);
exit_status = 0;

Vprintf (" nag_mesh2d_smooth (dO6cac) Example Program Results\n\n");
/* Skip heading in data file */
Vscanf ("s*[*\n] ");

/* Read imax and jmax, the number of vertices =*/
/* in the x and y directions respectively. */

Vscanf ("%1d", &imax) ;
Vscanf ("$1d", &jmax);
Vscanf ("s*[*\n] ");

/* Read distortion percentage and calculate radius */
/* of distortion neighbourhood so that cross-over =*/

/* can only occur at 100% or greater. */

Vscanf ("$1f", &delta);

Vscanf ("s*x["\n] ");

nv = imax*jmax;

imaxml = imax - 1;

jmaxml = jmax - 1;

nelt = 2*imaxml*jmaxml;
nedge = 2*(imaxml + jmaxml) ;

/* Allocate memory */

if (!(coor = NAG_ALLOC(2*nv, double)) ||
! (conn = NAG_ALLOC(3*nelt, Integer)) ||
! (edge = NAG_ALLOC(3*nedge, Integer)) ||
! (numfix = NAG_ALLOC(1l, Integer)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}

Vscanf (" ' %1s '", pmesh);
Vscanf ("$*[*\n] ");

hx = 1.0/(double) imaxml;
hy 1.0/(double)jmaxml;
rad = 0.0lxdeltax(hx > hy ? hy : hx)/2.0;
pi = 4.0*atan(1.0);
/* nag_rngs_init_repeatable (g05kbc).
* Initialize seeds of a given generator for random number
* generating functions (that pass seeds explicitly) to give
* a repeatable sequence
*
/

nag_rngs_init_repeatable(&igen, iseed);

/* Generate a simple uniform mesh and then distort it */
/* randomly within the distortion neighbourhood of each */
/* node. */

ind= 0;
for (j = 1; j <= jmax; ++j)
{
for (1 = 1; 1 <= imax; ++1)
{

/* nag_rngs_uniform (g051lgc).
* Generates a vector of random numbers from a uniform
* distribution, seeds and generator number passed
* explicitly
*/

[NP3660/8] d06cac.5

NAG C Library Manual

iseed, NAGERR_DEFAULT) ;

iseed, NAGERR_DEFAULT) ;

d06cac
nag_rngs_uniform(zero, rad, 1, one_draw, igen,
r = one_drawl[0];
dpi = 2.0*pi;
/* nag_rngs_uniform (g05lgc), see above. */
nag_rngs_uniform(zero, dpi, 1, one_draw, igen,
theta = one_draw([O0];
if (i == 1 || 1 == dmax || jJ == 1 || j == jmax)
k = (j-1)*imax + 1i;
COOR(1l, k) = (i-1)*hx + r+*cos(theta);
COOR(2, k) = (j-1)*hy + r#sin(theta);
if (i < imax && j < jmax)
{
++ind;
CONN(1, ind) = k;
CONN(2, ind) = k + 1;
CONN(3, ind) = k + imax + 1;
++ind;
CONN(1, ind) = k;
CONN(2, ind) = k + imax + 1;
CONN(3, ind) = k + imax;
}
¥
}
if (pmesh[0] == ’'N’)
{

Vprintf (" The complete distorted mesh characteristics\n");

Vprintf (" nv =%61d\n", nv);
Vprintf (" nelt =%61d\n", nelt);
¥
else if (pmesh([0] == ’'Y’)
{
/* Output the mesh to view it using the NAG Graphics Library */
Vprintf (" %$101d4%101d\n", nv, nelt);
for (i = 1; i <= nv; ++1i)
Vprintf (" %12.6e %12.6e \n",
COOR(1,1i), COOR(2,1));
}
else
{
Vprintf ("Problem with the printing option Y or N\n");
}
reftk = 0;
for (k = 1; k <= nelt; ++k)
{
mel = CONN(1, k);
me2 = CONN(2, k);
me3 = CONN(3, k);
x1 = COOR(1l, mel);
x2 = COOR(1l, me2);
x3 = COOR(1l, me3);
yl = COOR(2, mel);
y2 = COOR(2, me2);
y3 = COOR(2, me3);
sk = 0.5%((x2-x1)*(y3-yl) - (y2-yl)=*(x3-x1));
if (sk < 0.0)
{
Vprintf ("Exrror the surface of the element is negative\n");
Vprintf (" k = %61ld\n", k);
Vprintf (" sk = %12.6e\n", sk);
exit_status = -1;
goto END;
¥
d06cac.6 [NP3660/8]

d06 — Mesh Generation d06cac

}

if (pmesh[0] == 'Y')
Vprintf (" %$101d%101d%101d%101d\n",
CONN(1,k), CONN(2,k), CONN(3,k), reftk);

/* Boundary edges */

ind
for

{

for

for

for

}

= 0;
(1 = 1; 1 <= imaxml; ++1i)

++1ind;

EDGE(1,ind) = 1i;
EDGE(2,1ind) i
EDGE(3,ind) = 0;

|
[
+
oy

(i = 1; i <= jmaxml; ++1i)

++ind;
EDGE(1,ind) = i*imax;
EDGE (2,ind) = (i+1)*imax;

EDGE(3,ind) = 0;

(1 = 1; 1 <= (imax - 1); ++1)

++ind;

EDGE(1,ind) = imax*jmax - i + 1;
EDGE(2,ind) = imax*jmax - 1i;
EDGE(3,ind) = 0;

(i = 1; i <= jmaxml; ++1i)

++ind;

EDGE(1,ind) = (jmax - i)*imax + 1;
EDGE(2,ind) = (jmax - i - 1)*imax + 1;

EDGE (3,1ind) 0;

itrace = 1;
ngint = 10;

/* Call the smoothing routine *x/

/* nag_mesh2d_smooth (dO6cac).
* Uses a barycentering technique to smooth a given mesh

*/

nag_mesh2d_smooth(nv, nelt, nedge, coor, edge, conn, nvfix, numfix, itrace,

if
{

0, ngint, &fail);

(fail.code == NE_NOERROR)
if (pmesh[0] == 'N’)
{
Vprintf (" The complete smoothed mesh characteristics\n");
Vprintf (" nv =%61d\n", nv);
Vprintf (" nelt =%6ld\n", nelt);
}
else if (pmesh[0] == 'Y")
{

/* Output the mesh to view it using the NAG Graphics Library */
Vprintf (" %$101d%101d\n", nv, nelt);
for (i = 1; i <= nv; ++1)
Vprintf (" %12.6e %12.6e \n",
COOR(1,1i), COOR(2,1i));

reftk = 0;

[NP3660/8] d06cac.7

NAG C Library Manual

fail.message);

d06cac
for (k = 1; k <= nelt; ++k)
Vprintf (" %101d4%101d%101d4%101d\n",
CONN(1,k), CONN(2,k), CONN(3,k), reftk);
}
else
{
Vprintf ("Problem with the printing option Y or N\n");
exit_status = -1;
goto END;
}
3
else
{
Vprintf ("Error from nag_mesh2d_smooth (dO6cac).\n%s\n",
exit_status = 1;
goto END;
¥
END:
if (coor) NAG_FREE(coor);
if (conn) NAG_FREE (conn);
if (edge) NAG_FREE (edge);
if (numfix) NAG_FREE (numfix) ;

return exit_status;

9.2 Program Data

nag_mesh2d_smooth (dO6cac) Example Program Data
20 20 : IMAX JMAX

87.0 :DELTA

o\ :Printing option 'Y’ or ’'N’

9.3 Program Results

nag_mesh2d_smooth (dO6cac) Example Program Results

The complete distorted mesh characteristics
nv = 400

nelt = 722
BEFORE SMOOTHING
MINIMUM SMOOTHNESS MEASURE: 1.0048907
MINIMUM SMOOTHNESS MEASURE: 133.2110681
DISTRIBUTION
INTERVAL NUMBER OF ELEMENTS
1.0048907 - 14.2255084 720
14.2255084 - 27.4461262 0
27.4461262 - 40.6667439 0
40.6667439 - 53.88730616 0
53.8873616 - 67.1079794 0
67.1079794 - 80.3285971 0
80.3285971 - 93.5492149 0
93.5492149 - 106.7698326 0
106.7698326 - 119.9904504 0
119.9904504 - 133.2110681 1
AFTER SMOOTHING
MINIMUM SMOOTHNESS MEASURE: 1.3346259
MINIMUM SMOOTHNESS MEASURE: 1.4572261
DISTRIBUTION
INTERVAL NUMBER OF ELEMENTS
1.3346259 - 1.3468859 10
1.3468859 - 1.3591459 36
1.3591459 - 1.3714060 46
1.3714060 - 1.3836660 117
1.3836660 - 1.3959260 186
1.3959260 - 1.4081860 137
1.4081860 - 1.4204460 106
1.4204460 - 1.4327061 51
d06cac.8

[NP3660/8]

d06 — Mesh Generation d06cac

1.4327061 - 1.4449661 28
1.4449661 - 1.4572261 4
The complete smoothed mesh characteristics
nv = 400
nelt = 722
Figure 1

Distorted uniform mesh

Figure 2
After smoothing with nag_mesh2d smooth (d06cac)

[NP3660/8] d06cac.9 (last)

	d06cac
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	nv
	nelt
	nedge
	coor
	edge
	conn
	nvfix
	numfix
	itrace
	outfile
	nqint
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INT_4
	NE_INTERNAL_ERROR
	NE_NOT_CLOSE_FILE
	NE_NOT_WRITE_FILE

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

